miR-342-3p regulates MYC transcriptional activity via direct repression of E2F1 in human lung cancer.
نویسندگان
چکیده
Accumulating evidence indicates that altered miRNA expression is crucially involved in lung cancer development, though scant information is available regarding how MYC, an archetypical oncogene, is regulated by miRNAs, especially via a mechanism involving MYC cofactors. In this study, we attempted to identify miRNAs involved in regulation of MYC transcriptional activity in lung cancer. To this end, we utilized an integrative approach with combinatorial usage of miRNA and mRNA expression profile datasets of patient tumor tissues, as well as those of MYC-inducible cell lines in vitro. In addition to miRNAs previously reported to be directly regulated by MYC, including let-7 and miR-17-92, our strategy also helped to identify miR-342-3p as capable of indirectly regulating MYC activity via direct repression of E2F1, a MYC-cooperating molecule. Furthermore, miR-342-3p module activity, which we defined as a gene set reflecting the experimentally substantiated influence of miR-342-3p on mRNA expression, was found to be inversely correlated with MYC activity reflected by MYC module activity in three independent datasets of lung adenocarcinoma patients obtained from the Director's Challenge Consortium of the United States (P = 1.94 × 10(-73)), the National Cancer Center of Japan (P = 9.05 × 10(-34)) and the present study (P = 1.17 × 10(-19)). Our integrative approach appears to be useful to elucidate inter-regulatory relationships between miRNAs and protein coding genes of interest, even those present in patient tumor tissues, which remains a challenge to better understand the pathogenesis of this devastating disease.
منابع مشابه
mTORC2 promotes cell survival through c-Myc–dependent up-regulation of E2F1
Previous studies have reported that mTORC2 promotes cell survival through phosphorylating AKT and enhancing its activity. We reveal another mechanism by which mTORC2 controls apoptosis. Inactivation of mTORC2 promotes binding of CIP2A to PP2A, leading to reduced PP2A activity toward c-Myc serine 62 and, consequently, enhancement of c-Myc phosphorylation and expression. Increased c-Myc activity ...
متن کاملE2F1: A potential negative regulator of hTERT transcription in normal cells upon activation of oncogenic c-Myc
Previous studies have revealed that the link between c-Myc and E2F1 pathway plays a pivotal role in regulating cell growth and death. Human telomerase reverse transcriptase (hTERT), activation of which is required for cell immortalization and transformation, has been confirmed to be a direct transcriptional target of c-Myc. It is of note that E2F1, which is also a direct transcriptional target ...
متن کاملMiR-205-5p and miR-342-3p cooperate in the repression of the E2F1 transcription factor in the context of anticancer chemotherapy resistance
High rates of lethal outcome in tumour metastasis are associated with the acquisition of invasiveness and chemoresistance. Several clinical studies indicate that E2F1 overexpression across high-grade tumours culminates in unfavourable prognosis and chemoresistance in patients. Thus, fine-tuning the expression of E2F1 could be a promising approach for treating patients showing chemoresistance. M...
متن کاملMYC-induced cancer cell energy metabolism and therapeutic opportunities.
Although cancers have altered glucose metabolism, termed the Warburg effect, which describes the increased uptake and conversion of glucose to lactate by cancer cells under adequate oxygen tension, changes in the metabolism of glutamine and fatty acid have also been documented. The MYC oncogene, which contributes to the genesis of many human cancers, encodes a transcription factor c-Myc, which ...
متن کاملMolecular Pathways MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities
Although cancers have altered glucose metabolism, termed the Warburg effect, which describes the increased uptake and conversion of glucose to lactate by cancer cells under adequate oxygen tension, changes in the metabolism of glutamine and fatty acid have also been documented. The MYC oncogene, which contributes to the genesis of many human cancers, encodes a transcription factor c-Myc, which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 36 12 شماره
صفحات -
تاریخ انتشار 2015